

ASCE Concrete Canoe Competition

Mackenzie Bosland, John McElroy, John Lombardelli, *Matthew Palermo*, Jamie Paddock

> Dr. Andrew Bechtel, PhD Dr. Michael Horst, PhD, PE

> > May 1, 2024

Problem Statement and Background

- Design and fabrication
- Constructability, mix design, and hull design
- 2024 ASCE
 Metropolitan Region
 Student Symposium
- 5 races: slalom and sprint
- Proposal and presentation

Design Goals and Process

- Functional canoe
- Comply with design constraints
- Address realistic constraints
- Constructability
- Competitive at regionals
- Project schedule

Design Constraints

- Aggregates
 - Minimum 30% of total volume
- Cementitious material
 - Maximum 50% of total cement volume hydraulic
- Fibers (ASTM C1116)

Cementitious Materials	ASTM
Hydraulic Cement	C150, C595, C1157, or C845
Fly Ash	C618 (Class C or F)
Metakaolin or Calcined Clay	C618 (Class N)
Slag Cement	C989 (Grade 80 minimum)
Silica Fume	C1240
Hydrated Lime	C207 (Type S or N) or C821
Ground-Glass Pozzolan	C1866
Pumice, Pumicite, Natural Pozzolan	C618 (Class N)

Design Constraints (cont.)

- Admixtures
 - Bonding adhesives, waste latex paint and latex emulsions are prohibited
- Curing
 - Maximum 2 coats of liquid membrane
- Sealer
 - Clear, non-pigmented sealers are permitted

Admixtures	ASTM	
Water-Reducing & Set- Control	C494	
Air-Entraining	C260	
Coloring Admixture/Agents & Concrete Pigments	C979	
Specialty Admixtures	C494 (Type S)	

Realistic Constraints

Constructability

- Workability of concrete mix
- Mold shape
 - Needed to be possible to construct
- Mold material
 - Easy canoe removal
 - Plan ahead

Realistic Constraints (cont.)

Economic

- Proposed budget
 - Materials: \$2,450
 - Regionals: \$3,200
 - Canoe Trips: \$200
 - Total: \$5,850

Environmental

Water Pollution

Material Cost Breakdown			
Mold	\$425		
Concrete Mix/Finish	\$1,690		
Team Safety	\$105		

Regionals Cost Breakdown			
Registration	\$800		
Canoe Transportation	\$795		
Lodging	\$1,260		
Fuel and Tolls	\$330		

Alternative Mix Designs

	Mix 1	Mix 2	
Aggregates	Elemix, Pumice,	Pumice, Poraver	
Aggregates	Poraver	Fulfilice, Folavei	
Unit Weight (pcf) 60.84		56.16	
Strength (psi)	405.7	712.0	
Workability	High workability	Low Workability	
Faanamia	Elemix no longer	Pumice: \$25/bag	
Economic	available	Poraver: \$70/bag	

Alternative Mix Designs (cont.)

	Mix 3	Mix 4
Aggregates Stalite, Poraver		Poraver
Unit Weight (pcf)	54.72	51.48
Strength (psi)	589.3	859.3
Workability	Low Workability	Low Workability
Economic	Stalite: \$28/bag	Darayar: \$70/bag
Economic	Poraver: \$70/bag	Poraver: \$70/bag

Mix Design Alternatives Graph

Final Mix Design

Unit Weight 52.2 pcf

Strength 680 psi

Air Entrainer
2 fluid ounces
per 100 lb of
aggregate

Property	Value
Slump	¼ in
Air Content	5.5%
W/CM Ratio	0.42

Category	Material	Percent of Mixture by Mass
	Portland Cement	23%
Cementitious Material	Slag Cement	12.5%
iviateriai	Fly Ash	10.5%
	Poraver (0.25- 0.5mm)	9.7%
Aggregate	Poraver (0.5-1mm)	11.6%
	Poraver (1-2mm)	13.5%
Water	Tap Water	19.2%

Alternative Hull Designs - Design 1

- Length: 20 feet
- Beam: 2 feet
- Side Profile: Straight
- Bottom Profile: Shallow V

Alternative Hull Designs - Design 2

- Length: 16 feet
- Beam: 3 feet
- Side Profile: Tumblehome
- Bottom Profile: Flat

Alternative Hull Designs - Design 3

- Length: 18 feet
- Beam: 2.5 feet
- Side Profile: Flare
- Bottom Profile: Shallow Arch

Hull Design Decision Matrix

	Weight	Design 1	Design 2	Design 3
Constructability	5	1	2	3
Stability	5	1	3	2
Maneuverability	3	1	3	2
Speed	2	3	1	2
Tracking	1	3	1	2
Total		22	37	37

Hydrostatic Analysis

Final Hull Design

Structural Analysis

- Assumptions
 - Linear increase of height and width
 - 4 person sprint race loads

Structural Analysis (cont.)

Structural Analysis (cont.)

- Compressive stress:20 psi
- Tensile Stress: 10 psi
- Punching Shear:
 - Two-way shear strength (ACI 318)
 - Stress of 25 psi
 - Shear strength of65 psi

Mold Construction

- Accessible mold
- Frame constructed in two parts
- Easy removal
- Modular repair
- Used for transportation

Mold Construction (cont.)

- Female mold
- Constructed in-house
- Wood frame
- Plywood cross-sections
- Masonite strips
- Plaster and paint
- Oil and saran wrap

Mold Construction (cont.)

Half Mold

Full Mold

Completed Mold

Canoe Construction

Reinforcing Mesh 1 linear foot styrofoam

0.8 inch thickness

Curing

Week 1

Weeks 2 & 3

Week 4

Staining and Sealing

Transportation

- Moving Blankets
- In mold
- Dolly
- Forklift
- 3-hour drive
- Cracked during transportation

Competition Results

Repairs made

Table Setup

Competition Results (Cont.)

Swamp test passed

- Attempted Women's Slalom
- Placed 5th out of 6
- 3rd for project proposal

Recommendations for Next Year

- Strength over unit weight
- Use more foam if needed
- Soak aggregates
- Double reinforcement
- Simplified hull geometry
- Support on both sides during transportation

Project Schedule

ASCE Concrete Canoe Competition Gantt Chart

Engineering Services Cost

Engineering Labor Costs								
ltem		Fall		Spring				
		Engineering Supervisors	Engineer II	Engineer I	Engineering Supervisors	Engineer II	Engineer I	Technician
	Employees	2	1	4	2	1	4	1
Salary	Rate (per hour)	\$50	\$39	\$37	\$50	\$39	\$37	\$30
	Hours	16	80	320	17	68	270	8
	Base Salary	800	3120	11840	850	2633	9990	240
Overhead Allocation Rate		\$19.94	\$29.44	\$24.44	\$19.94	\$31.53	\$25.65	\$129.26
Total Billable Rate		\$69.94	\$68.44	\$61.44	\$69.94	\$70.53	\$62.65	\$159.26
	Employee Cost	\$1,120	\$5,480	\$19,660	\$1,190	\$4,760	\$16,920	\$1,270
Total Costs	Profit Multiplier (6%)	\$1,190	\$5,800	\$20,840	\$1,260	\$5,050	\$17,930	\$1,350
	Total Labor Cost	\$27,830		\$25,590				

Construction Cost

Total Construction Cost			
Mold	\$484		
Canoe	\$378		
Miscellaneous	\$519		
Total	\$1379		

Thank You

Questions?