

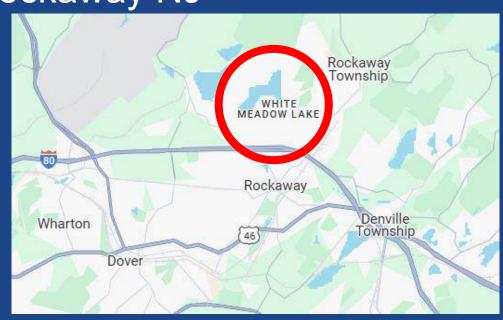
ASCE Concrete Canoe Competition

Rachel Alecci, Olivier Duverneau, Ethan Earley, Anthony Giorgi (Team Leader), Zach Hochheiser

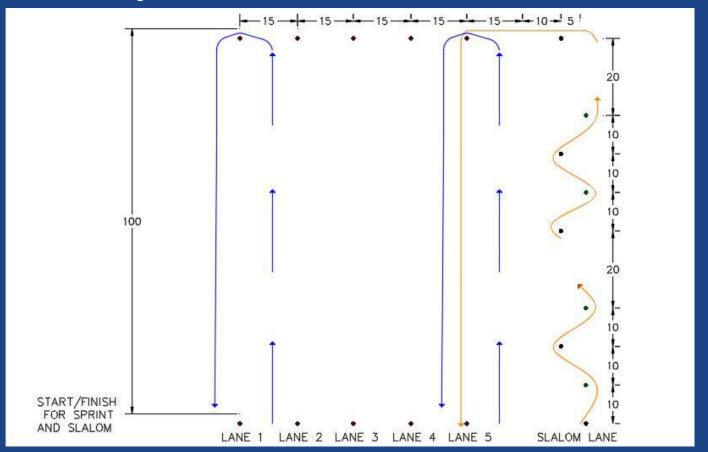
Dr. Bechtel

Problem Statement

- Design and fabricate canoe out of concrete
- Improve from last year
- Focus on three aspects:
 - Materials Design
 - Constructability
 - Quality of final product


Competition Overview

Location:


White Meadow Lake, Rockaway NJ

Four Aspects:

- Product Prototype
- Project Proposal
- Presentation
- Five Races

Course Layout

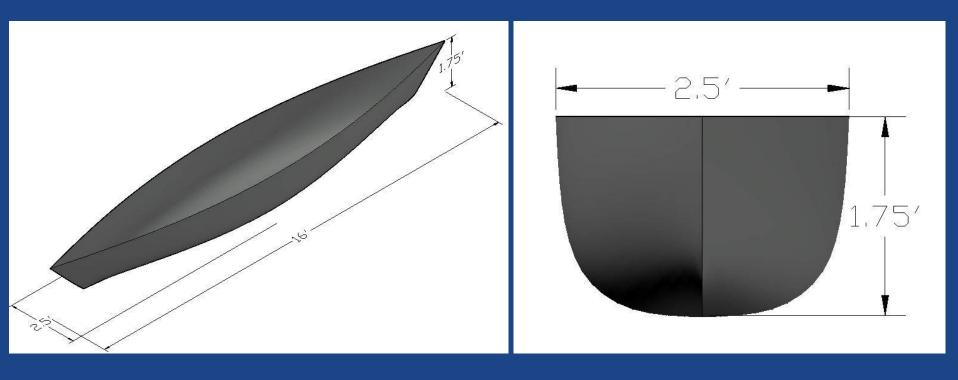
Design Constraints

- Cementitious Material:
 - Maximum 50% hydraulic cement by mass
 - Maximum 15% hydrated lime by mass
- Aggregates
 - Minimum 35% by volume

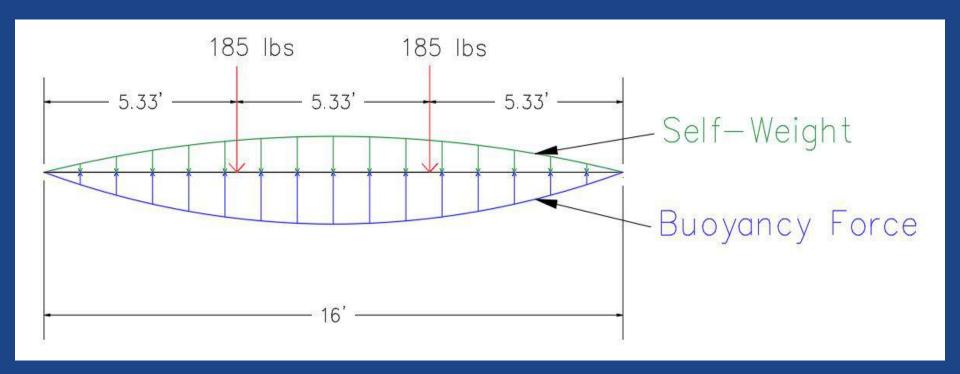
Cementitious Materials	ASTM
Hydraulic Cement (c)	C150, C595, C1157, or C845
Coal Ash	C618 (Class C or F)
Slag Cement	C989 (Grade 80 minimum)
Silica Fume	C1240
Hydrated Lime	C207 (Type S or N) or C821
Ground Pumice, Pumice, or Volcanic Ash Natural Pozzolan	C618 (Class N)

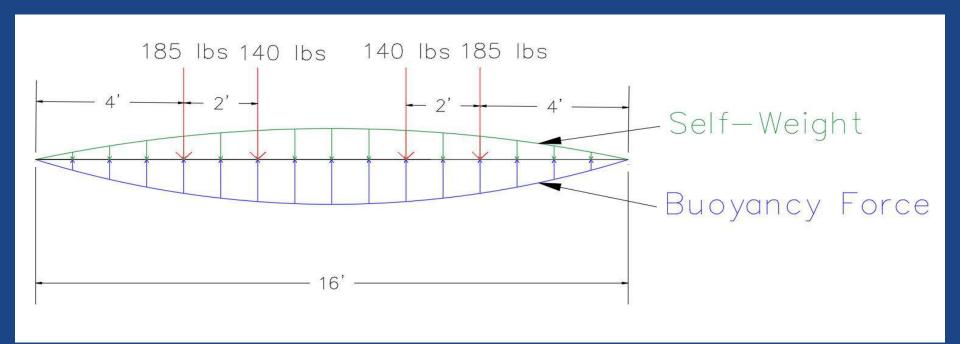
Design Constraints

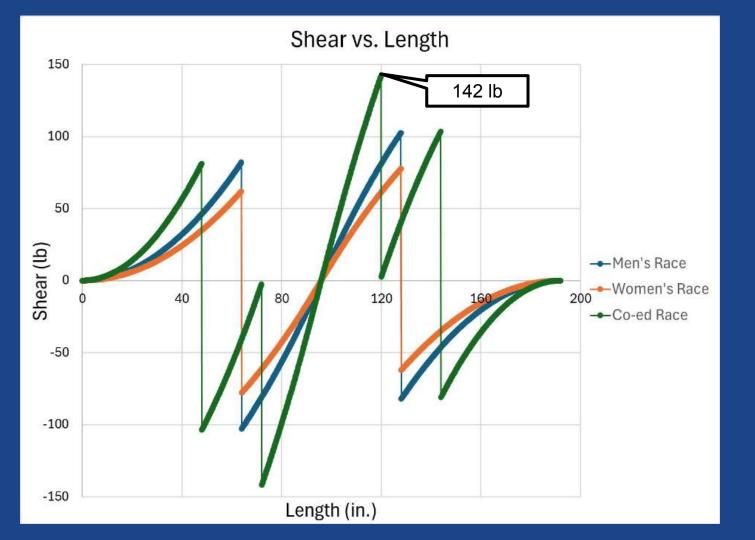
- Sealer
 - Maximum two layers
- Prohibited Materials:
 - Bondo
 - Epoxy resins
 - Asphalt emulsions

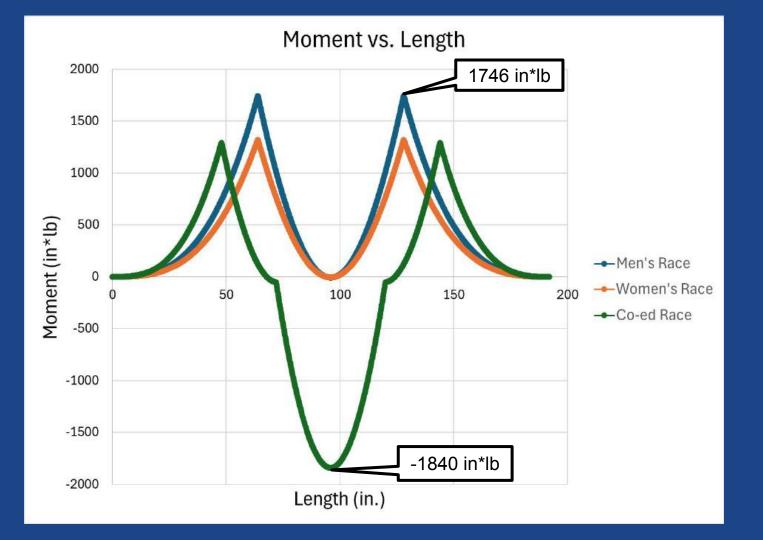

Admixtures	ASTM
Water Reducing & Set Control	C494
Air-Entraining	C260
Coloring Admixture/Agents & Concrete Pigments	C979
Specialty Admixtures	C494 (Type S)
Latex Emulsions	C1438

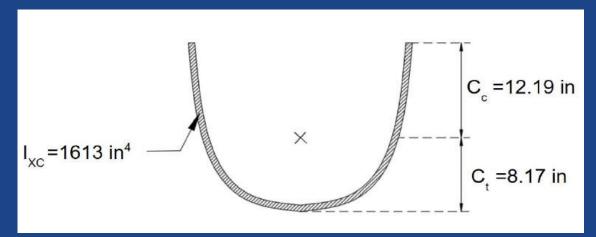
Realistic Constraints

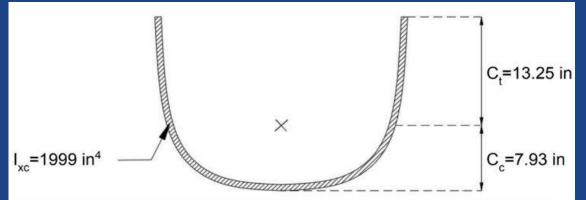

- Constructability
 - Mold
 - Workability
 - Transportation of canoe
- Economic
 - Budget


Hull Design




Structural Analysis


Structural Analysis



Structural Analysis

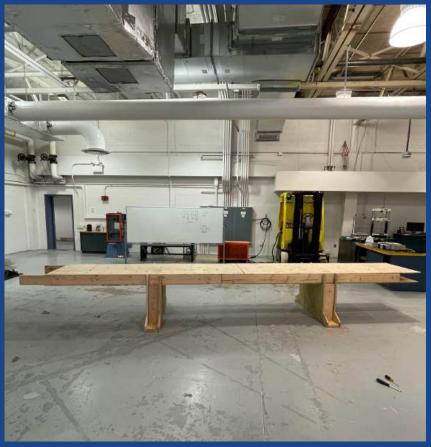
5 $\frac{1}{3}$ feet: $\sigma_{c,min} = 14 \text{ psi}$

8 feet: $\sigma_{t,min} = 13 \text{ psi}$

2024 TCNJ Mix Vs. University of Florida (Winner)

- 2024 TCNJ Mix
 - Low workability
- Florida's Mix
 - More workable
 - Use of hydrated lime

- Main Objectives:
 - Workability
 - Unit Weight
- Adjustments:
 - Types of cement
 - Amount of aggregate
 - Different admixtures


	Mix #3	Mix #5	Mix #7
Difference	Pumice	No Fly Ash	Admixture
Unit Weight (pcf)	73	59	64
Compressive Strength (psi)	1930	1080	1240
Workability	Low	Low	Medium

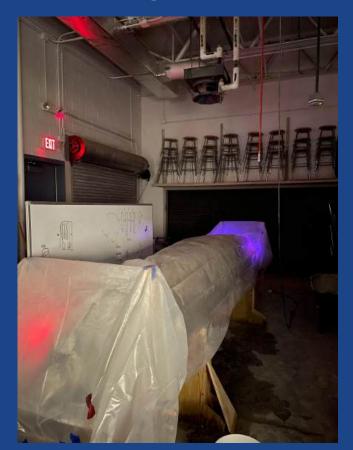
Material	% (mass)
Poraver (0.5mm-1mm)	21
Poraver (0.25mm-0.5mm)	12
Portland Cement	24
Slag Cement	14
Hydrated Lime	5
Water	22
Superplasticizer	3
PVA Fibers	0.15

Compressive Strength (psi)	1599
Unit Weight (pcf)	59
W/C Ratio	0.51

Mold Construction

Mold Construction

Mold Construction


Pour Day

Curing/Mold Removal

Curing/Mold Removal

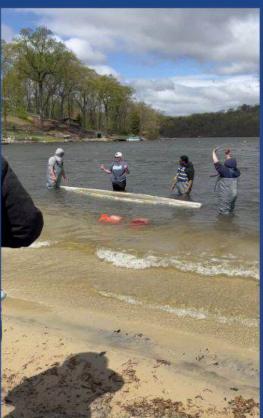
Transportation

Competition

Overall: 5th

- Proposal: 6th
- Presentation: 4th
- Prototype: 3rd

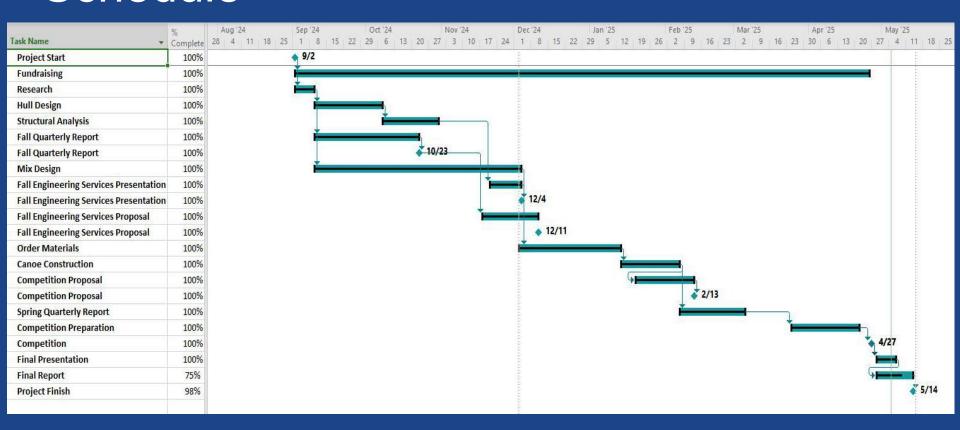
Competition



Swamp Test

Construction Costs

Construction				
	Budgeted	Spent		
Mold/Curing	\$450	\$760		
Concrete Materials	\$750	\$770		
Construction Materials	\$200	\$75		
Transportation	\$550	\$670		
Competition	\$1400	\$675		
Total	\$3,350	\$2,950		


Fundraising				
HNTB	\$500			
CivilTec	\$250			
Whiting Turner	\$500			
Heidelberg Materials	Slag Cement			
JDM Materials	Admixtures Portland Cement			

Engineering Costs

	Supervisor	Lab Technician	ENG II	ENG I	ENG I	ENG I	ENG I
	Dr. Bechtel	Mike Steeil	Anthony	Zach	Ethan	Rachel	Olivier
	\$80	\$50	\$35	\$33	\$33	\$33	\$33
Fall Tasks							
Competition Research	1	0	8	7	7	7	7
Problem Statement Presentation	1	0	5	4	4	4	4
Hull Design	1	0	2	6	0	0	8
Structural Analysis	2	0	4	4	0	0	0
Mix Design	5	0	9	8	12	10	10
Alternative Designs Presentation	0	0	5	4	5	5	5
Website	0	0	1	1	6	6	0
Quarterly Report	0	0	5	5	5	6	6
Engineering Services Presentation	0	0	4	4	4	5	3
Final Report	0	0	8	8	8	8	8
Total Fall Hours	10	0	51	51	51	51	51
Spring Tasks							
ASCE Report	0	0	6	5	5	10	6
Mold Construction	10	11	39	32	31	18	21
Canoe Casting	3	1	8	9	9	9	14
Spring Presentation	0	0	1	4	4	4	4
Website	0	0	1	0	2	2	1
Spring Quarterly Report	0	0	5	3	2	5	3
Competition	0	0	8	7	7	7	7
Engineering Services Presentation	0	0	3	4	4	2	4
Final Report	0	0	2	3	3	5	3
Total Spring Hours	13	12	73	67	67	62	63
Total Hours on Project	23	12	124	118	118	113	114

Engineering Costs				
Fall Combined Salaries	\$9,320			
Fall Overhead (150%)	\$13,980			
Fall Fixed Fee (10%)	\$2,330			
Fall Total	\$25,600			
Spring Combined Salaries	\$12,740			
Spring Overhead (150%)	\$19,110			
Spring Fixed Fee (10%)	\$3,190			
Spring Total	\$35,000			
Total Cost	\$60,600			

Schedule

Acknowledgements

Acknowledgements

Questions?

Banana Split

