

TCNJ THE COLLEGE OF
NEW JERSEY

Parking Lot Availability System using a CampusWide Wireless Network

MATTHEW COOK,
NIKITA EISENHAUER, STEPHANIE FOURNIER WARREN SETO

ADVISOR: DR. PEARLSTEIN

ENGINEERS

Matthew Cook
Computer Engineer

Detection

Nikita Eisenhauer
Electrical Engineer

Power System

Stephanie Fournier
Electrical Engineer

Enclosure \& Assembly

Warren Seto

Computer Engineer
Base Station \& Server

PROBLEM

PROBLEM

- Lack of coordination to accommodate growth
- Limited Lots, Limited Spots
- Currently, finding lots...
- Leads to Guessing
- Leads to Wandering
- Leads to Frustrated drivers
- ... all before your first class

WHAT IF...

SENIOR PROJECT ARCHITECTURE

Drivers

SENIOR PROJECT ARCHITECTURE

SENIOR PROJECT ARCHITECTURE

DETECTION UNIT REQUIREMENTS

- Self-powered
- Reliably detect vehicles entering and exiting the parking lot
- Withstand harsh weather conditions and elements

DETECTION UNIT BREAKDOWN

POWER
 SUBSYSTEM

DETECTION UNIT CORE

DETECTION UNIT CORE ARCHITECTURE

- Arduino Based

Microcontroller

DETECTION UNIT CORE SOFTWARE ARCHITECTURE

LIDAR
I2C
FEATHER 32U4

DETECTION UNIT CORE HARDWARE ARCHITECTURE

DETECTION UNIT CORE PROGRESS

- Completed Tasks
- Measure data from one LiDar sensor
- Future Tasks
- Measure data from both LiDar sensors
- Familiarize with I2C Protocol
- Create sensor shutdown
 circuitry

DETECTION UNIT BREAKDOWN

POWER
 SUBSYSTEM

DETECTION UNIT
 CORE

$$
\begin{gathered}
\text { POWER } \\
\text { SUBSYSTEM }
\end{gathered}
$$

DETECTION UNIT POWER SUBSYSTEM CURRENT ANALYSIS

			Detection Unit Draw	
LoRa (x1)	IR Sensor 1	IR Sensor 2	(V)	(A)
Sleep	Standby	Standby	[3.3V]	314 uA
Sleep	Standby/Peak	Standby/Peak	[3.3V]	40.307 mA
Sleep	Peak	Peak	[3.3V]	80.3 mA
Listening	Standby	Standby	[3.3V]	40.014 mA
Listening	Standby/Peak	Standby/Peak	[3.3V]	80.007 mA
Listening	Peak	Peak	[3.3V]	120 mA
Peak	Standby	Standby	[3.3V]	120.014 mA
Peak	Standby/Peak	Standby/Peak	[3.3V]	160.007 mA
Peak	Peak	Peak	[3.3V]	200 mA

DETECTION UNIT POWER SUBSYSTEM PARTS

- 5V parallel solar panels w/ Schottky blocking diodes and current sensing resistor
- DC / DC switching converter in step - up configuration
- 4.2 volt regulator w/ 1 amp current limiting in series configuration
- MOSFET battery sub-circuit switch controlled from LoRa module
- High frequency decoupling capacitors for ripple and spike rejection
- Current sensing cutoff at battery terminals

DETECTION UNIT POWER SUBSYSTEM GENERAL SOLAR MAP

DETECTION UNIT POWER SUBSYSTEM WIRELESS RANGE MAP

DETECTION UNIT POWER SUBSYSTEM ARCHITECTURE BREAKDOWN

- Block Sections

1. Solar
2. Circuit Protection \& Measurement
3. Power Conditioning
4. Power Regulation \& Limiting
5. Charging Control \& Measurement
6. Battery

DETECTION UNIT POWER SUBSYSTEM ARCHITECTURE BREAKDOWN

1. Solar Panel

- $5 \mathrm{~V} / 500 \mathrm{~mA}$
- 2.5 W
- Bare bones, no blocking or overcurrent protection

DETECTION UNIT POWER SUBSYSTEM ARCHITECTURE BREAKDOWN

- 2. Circuit Protection \&

Measurement

- Schottky blocking diodes
- Low forward voltage drop
- Parallel panel feedback blocking
- Low value current sense resistor w/ dummy load switching
- Determine sunlight conditions and solar panel operation

DETECTION UNIT POWER SUBSYSTEM ARCHITECTURE BREAKDOWN

3. Power Conditioning

- DC/DC switching
 converter
- Step up voltage
- High efficiency / low power loss

DETECTION UNIT POWER SUBSYSTEM ARCHITECTURE BREAKDOWN

- 4. Power Regulation \& Limiting
- LM317 linear regulator
- Variable output voltage

capabilities

DETECTION UNIT POWER SUBSYSTEM ARCHITECTURE BREAKDOWN

- 5. Charging Control \&

Measurement

- MOSFET switch
- Control charging / discharging durations of battery
- Low value current sense resistor

- Determine battery capacity

DETECTION UNIT POWER SUBSYSTEM ARCHITECTURE BREAKDOWN

- 6. Battery
- 4.2 / 3.7 V
- 4000 mAh
- Battery cutoff circuitry

DETECTION UNIT POWER SUBSYSTEM SCHEMATIC

DETECTION UNIT POWER SUBSYSTEM PROGRESS

Completed

- Solar and battery system background research
- Circuit current draws and demands
- Initial necessary constituent components
- Initial schematic design

In Progress

- Final component selection
- Battery performance and weekly traffic prediction
- Schematic revision
- Circuit simulation (individual components and total circuit)
- Solar panel Voc and Isc testing, plus shade performance and load testing

DETECTION UNIT BREAKDOWN

POWER
 SUBSYSTEM

DETECTION UNIT
 CORE

DETECTION UNIT ENCLOSURE DESIGN

- Object of enclosure is to ensure security to parts and to keep them in place.
- Must conserve space to conserve material.
- For detection unit, sensors are mounted on the wall of the enclosure with an
 opening.

DETECTION UNIT ENCLOSURE DRAWING

DETECTION UNIT ENCLOSURE RENDER

DETECTION UNIT BREAKDOWN

POWER
 SUBSYSTEM

DETECTION UNIT
 CORE

SENIOR PROJECT ARCHITECTURE

BASE STATION REQUIREMENTS

- Accept incoming payloads from multiple detection units
- Reliable connection to AWS
- Can be updated with new software

> BASE STATION

BASE STATION REQUIREMENTS ARCHITECTURE

COMPARISON

	WIFI	BLUETOOTH	ZIGBEE	CELLULAR	LORA
CURRENT DRAW TX/RX (MILLIAMPS)	172/70	11/12.5	33/28	$344 / 227$	100/16
LINE OF SIGHT RANGE (METERS)	100	100	120	CELLULAR NETWORK COVERAGE	2000
$\underset{\text { (USD s) }}{\mathrm{COSS}}$	25	20	23	40	20

COMPARISON

	WIFI	BLUETOOTH	ZIGBEE	CELLULAR	LORA
CURRENT DRAW TX/RX (MILIAMPS)	$172 / 70$	$11 / 12.5$	$33 / 28$	$344 / 227$	$100 / 16$
LINE OF SIGHT RANGE (METERS)	100	100	120	CELLULAR NETWORK COVERAGE	2000
COST	25	20	23	40	20

BASE STATION REQUIREMENTS ARCHITECTURE

COMPARISON

	ARDUINO UNO	ARDUINO MKR WAN	PARTICLE PHOTON	CYPRESS PSOC	ADAFRUIT FEATHER
$\begin{aligned} & \text { CLOCK } \\ & \text { SPEED } \\ & (M H Z) \&(B I T) \end{aligned}$	$\underset{(8-B 1 T)}{16}$	$\underset{(32-\mathrm{BIT})}{32}$	$\begin{gathered} 120 \\ (32-\mathrm{BIT}) \end{gathered}$	$\begin{gathered} 48 \\ (32 \cdot \mathrm{BIT}) \end{gathered}$	$\begin{gathered} 48 \\ (32-\mathrm{BIT}) \end{gathered}$
$\begin{gathered} \text { FLASH } \\ \underset{\text { MEMOR) }}{\text { (КВ } O R Y} \end{gathered}$	32	256	1024	256	256
$\underset{(\mathrm{KB})}{\mathrm{RA}}$	2	32	128	1024	32
$\underset{\text { (USD S) }}{\operatorname{COST}}$	25	35	20	45	35
$\begin{aligned} & \text { ONBOARD } \\ & \text { RADIO } \\ & \text { OPTIONS } \end{aligned}$	-	LORA	WIFI / CELLULAR	WIFI / BLUETOOTH	WIFI / BLUETOOTH / LORA

COMPARISON

	ARDUINO UNO	ARDUINO MKR WAN	$\begin{aligned} & \text { PARTICLE } \\ & \text { PHOTON } \end{aligned}$	$\begin{gathered} \text { CYPRESS } \\ \text { PSOC } \end{gathered}$	ADAFRUIT FEATHER
CLOCK SPEED (MHZ) \& (BIT)	$\begin{gathered} 16 \\ (8-B I T) \end{gathered}$	$\begin{gathered} 32 \\ (32-B \mid T) \end{gathered}$	$\begin{gathered} 120 \\ (32-B \mid T) \end{gathered}$	$\begin{gathered} 48 \\ (32-\mathrm{BIT}) \end{gathered}$	$\begin{gathered} 48 \\ (32-\mathrm{BIT}) \end{gathered}$
$\begin{gathered} \text { FLASH } \\ \text { MEMORY } \\ (\mathrm{KB}) \end{gathered}$	32	256	1024	256	256
$\underset{(K B)}{\text { RAM }}$	2	32	128	1024	32
$\underset{\text { (USD \$ })}{\mathrm{COST}}$	25	35	20	45	35
$\begin{aligned} & \text { ONBOARD } \\ & \text { RADIO } \\ & \text { OPTIONS } \end{aligned}$	-	LORA	WIFI / CELLULAR	WIFI / BLUETOOTH	WIFI / BLUETOOTH / LORA

All values are derived from products sold by Adafruit Inc. and DigiKey as of October 2017

BASE STATION REQUIREMENTS ARCHITECTURE

	DELL GX520	ADAFRUIT FEATHER MO	BEAGLEBONE BLACK	C.H.I.P	RASPBERRY PI 3
CLOCK SPEED (GHz)	$\begin{aligned} & 2.8 \\ & \text { (DUAL CORE) } \end{aligned}$	48 (SINGLE CORE)	$\begin{gathered} 1 \\ \text { (Single Core) } \end{gathered}$	1 (SINGLE CORE)	$\begin{aligned} & 1.2 \\ & \text { (OUAD CORE) } \end{aligned}$
DISK (GB)	400	0.000256	4	4	4
$\underset{(G B)}{\mathrm{RA}}$	1	0.000032	0.5	0.5	1
$\underset{\text { (GRAMS) }}{\text { WEIGHT }}$	8700	3.08	40.82	1.81	136
COST	100	40	55	10	35
BUILT IN CONNECTIVITY	ETHERNET	ETHERNET	WIFI + BLUETOOTH	WIFI + BLUETOOTH	ETHERNET + WIFI + BLUETOOTH

All values are derived from products sold by Adafruit Inc. and Amazon as of October 2017

COMPARISON

	DELL GX520	ADAFRUIT FEATHER MO	$\begin{gathered} \text { BEAGLEBONE } \\ \text { BLACK } \end{gathered}$	C.H.I.P	RASPBERRY PI 3
CLOCK SPEED	$\begin{aligned} & 2.8 \\ & \text { (DUAL CORE) } \end{aligned}$	48 (SINGLE CORE)	1 (single core)	1 (SINGLE CORE)	$\begin{aligned} & 1.2 \\ & \text { (OUAD CORE) } \end{aligned}$
$\underset{(G B)}{\text { DISK }}$	400	0.000256	4	4	4
$\underset{(G B)}{\operatorname{RAM}}$	1	0.000032	0.5	0.5	1
$\underset{\text { (GRAMS) }}{\text { WEIGHT }}$	8700	3.08	40.82	1.81	136
$\underset{\text { (USD S) }}{\operatorname{COST}}$	100	40	55	10	35
BUILT IN CONNECTIVITY	ETHERNET	ETHERNET	$\begin{gathered} \text { WIFI + } \\ \text { BLUETOOTH } \end{gathered}$	WIFI + BLUETOOTH	$\begin{aligned} & \text { ETHERNET + } \\ & \text { WIFI + } \\ & \text { BLUETOOTH } \end{aligned}$

All values are derived from products sold by Adafruit Inc. and Amazon as of October 2017

BASE STATION REQUIREMENTS ARCHITECTURE

BASE STATION HARDWARE ARCHITECTURE

BASE STATION SOFTWARE ARCHITECTURE

UPCOMING BASE STATION DEVELOPMENT TASKS

SPEED UP BASE STATION BOOT UP

 COMMUNICATION
BASE STATION REQUIREMENTS ARCHITECTURE

SENIOR PROJECT ARCHITECTURE

SERVER REQUIREMENTS

- Accept incoming payloads from Base Stations
- Reliable connection to Base Stations
- Can be updated with new software
- Provide a user interface for the occupancy of each lot
- Ability to store the status of each lot

SERVER SOFTWARE ARCHITECTURE

SERVER IS LIVE!

https://tcnj-traffic.herokuapp.com

SERVER IS LIVE!

Lot Name	Status
Lot 1	$0 / 100$
Lot 2	$0 / 200$
Lot 3	$0 / 300$
Lot 4	$0 / 400$
Lot 5	$0 / 500$
Lot 6	$0 / 600$
Lot 7	$0 / 700$
Lot 8	$0 / 800$
Lot 9	$0 / 900$
Lot 10	$0 / 1000$
Lot 11	$0 / 1100$
Lot 12	$0 / 1200$
Lot 13	$0 / 1300$
Lot 14	$0 / 1400$
Lot 15	$0 / 1500$
Lot 16	$0 / 1600$
Lot 17	$0 / 1700$
Lot 18	$0 / 1800$

UPCOMING SERVER DEVELOPMENT TASKS

SENIOR PROJECT ARCHITECTURE

SCHEDULE

PROJECTED TIME BUDGET

PROJECTED COST BUDGET

PROJECTED COST BUDGET

ITEM	QUANTITY	COST PER QUANTITY	TOTAL COST
ADAFRUIT FEATHER	2	\$35	\$70
RASPBERRY PI	1	\$32	\$35
LIDAR SENSORS	2	\$15	\$30
LIPO BATTERY	1	\$17	\$ 17
SCHOTTKY DIODES	2	\$1.35	\$2.70
LINEAR VOLTAGE REG	1	\$0.53	\$0.53
(DC/DC CONVERTER)	1	\$0.47	\$0.47
$B \cup D G E T$			\$400.00
GRAND TOTAL			\$155.70
REMAININGFU			\$244.30

DETECTION UNIT PROTOTYPE

DETECTION UNIT PROTOTYPE

DETECTION UNIT CORE PROTOTYPE

POWER SUBSYSTEM PROTOTYPE

TCNJ THE COLLEGE OF NEW JERSEY

Parking Lot Availability System using a CampusWide Wireless Network

MATTHEW COOK,
NIKITA EISENHAUER,
STEPHANIE FOURNIER,
WARREN SETO
ADVISOR: DR. PEARLSTEIN

