
Visual and Aural Telepresence via NAO Robot

Chelsea Cantone (CoE), Theresa Pham (CoE), Daniel Ponsini (EE)

Advisor: Dr. Seung-yun Kim

February 7th, 2018

Overview

Introduction

Project Goals

Specifications

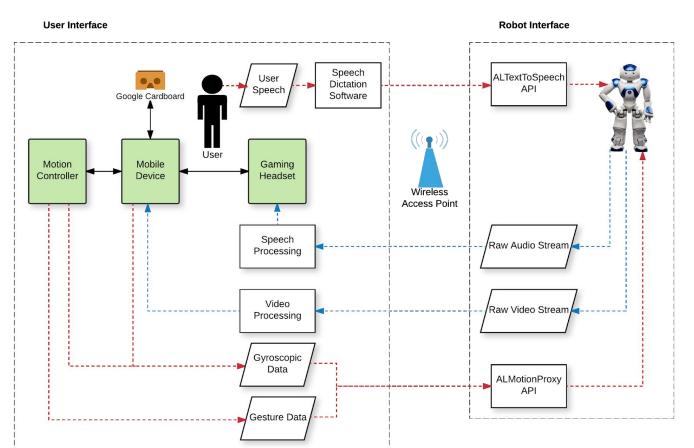
- System Block Diagram
- Quantitative Specifications

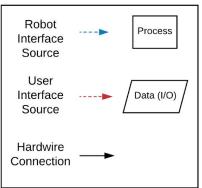
Tasks

- Schedule
- Task Breakdown

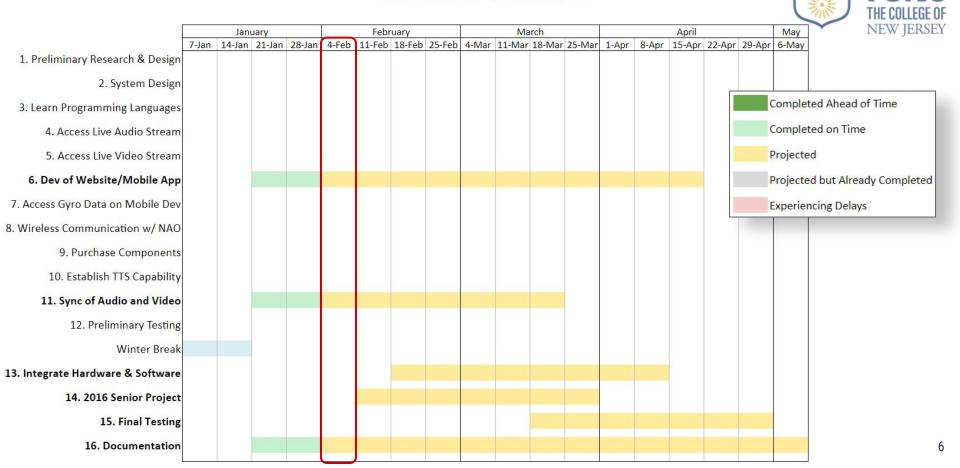
Project Management

- Budget
- Projected Hours
- Open Als


Project Goals


- To aurally and visually engage the user and audience using the NAO robot
- To develop wireless communication between the NAO and a user wearable headset
 - connecting movement using gyroscope data
- To develop a web/mobile application which receives a live video and audio stream from NAO
- To incorporate Motion-Based Humanoid Robot Controller project

Legend



Field of Vision	60° horizontally by 50° vertically
Weight	Headset < 2.5 lbs Arm Controller < 1 lb
Battery Life/Power Consumption (robot system and user system)	1-2 hours
Video Resolution	320×240 pixels
Framerate	15fps

Tolerated Latency	<1 second
Movement sensitivity	TBD
Degrees of Freedom in Teleoperated Robot	6
Wireless Range	TBD
Wireless Transmission Reliability	TBD

Gantt Chart

August 27th - October 14th

- Research similar projects
- Determine a feasible preliminary design
 - Decide the mobile platform and research app development
 - Determine appropriate hardware and software

August 27th - October 14th

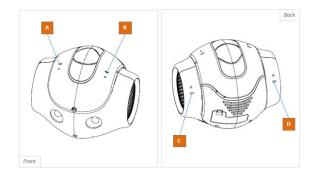
- Create block diagram of the system
- Outline system specifications
 - Qualitative and quantitative goal specifications for the project

Task 3: Understand Necessary Programming Languages

September 10th - October 14th

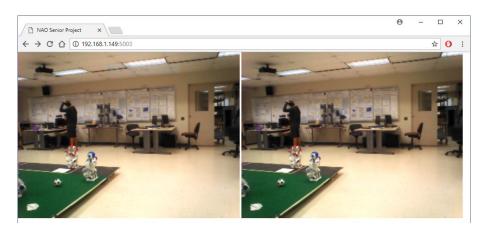
 Learn how to work with various programming languages needed for the project:

- Python
 - ▶ NAOqi SDK
 - Flask (web framework module)
- Front-End Languages
 - ► HTML/CSS
 - Javascript



October 8th October 28th → October 1st - November 25th

- Access NAO audio buffers from NAO's microphones
- Using NAOqi ALAudioDevice API
 - Subscribe to the buffer containing microphone channels
 - Pass these buffers to the web application using Flask



October 8th October 28th → September 17th - September 30th

- Access the video stream through the web
- Using NAOqi ALVideoDevice
 - getImageRemote function to return a video feed

Resolution Examples

Resolution: 40x30 Latency: 0 seconds

Resolution: 320x240 Latency: ~0.6 seconds

Resolution: 80x60 Latency: 0 seconds

Resolution: 640x480 Latency: ~3 seconds

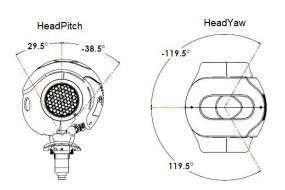
Resolution: 160x120 Latency: 0 seconds

Resolution: 1280x960 Latency: ~10 seconds

Task 6: Development of Website/Mobile App

October 8th - March 10th → September 24th - April 21st

- Create a website (which can be accessed using a phone)
- Develop alternative system implementation in a mobile application (iPhone and Android devices)
- Design a user interface navigable through the headset controller
- Will add start button after headset is in place to activate the system



Task 7: Access Gyroscope Data on Mobile Device

October 8th - October 28th

 Use HTML5/Javascript to access gyroscope data through the phone

Task 8: Establish Wireless Communication with NAO

October 15th December 9th → September 17th - December 9th

- Establish connection over Wi-Fi to the NAO
- Simultaneously send and receive data with NAO

October 8th -

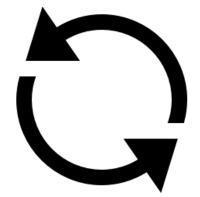
- Purchase a headset with a high fidelity microphone
- Purchase two Google Cardboard VR headsets

Purchase materials to incorporate VR head strap

Task 10: Establish Text-to-Speech (TTS) capability

October 22nd - December 9th

- Use a Python script to take user speech, convert it to a string, and send the string to the robot to recite
 - Utilize speech_recognition and pyaudio packages
 - speech_recognition package uses Google SpeechRecognition API
 - Use NAOqi ALTextToSpeech API to allow the robot to say the input string



Task 11: Synchronization of Audio and Video

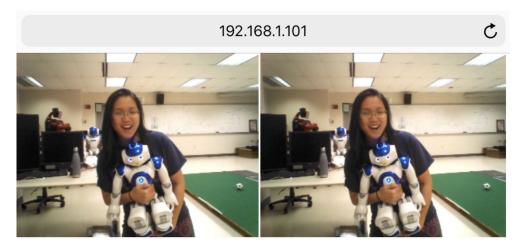
November 5th December 9th January 28th - March 24th

- Develop multiplexer for proper live audio and video mixing
- Adjust latencies and/or framerate when out of sync
- Investigate GStreamer, FFmpeg, and other video processing support libraries
- Audio pre-processing for near real-time streaming

November 5th - November 25th

Test components individually for unit functionality

Tested live video, audio, head control using gyroscopic


data, text-to-speech

y: 16

z: 36

init y: 1

init z: 360

January 21st March 3rd → February 18th - April 14th

- Integrate all software modules interfacing with hardware
- Ensure ability to wear all user interfacing devices (VR headset and Gaming headset) with web application running
- Assembly of headset
 - Optimal comfort and durability
- Synchronization of gyroscope and video streams

January 21st March 3rd → February 11th - March 31st

- Provide support for both:
 - Leg control (discrete), using a gesture sensor
 - Arm control (differential), using accelerometer, magnetometer, and gyroscope
- Resolve previous years problems communicating to the Arduino in COM

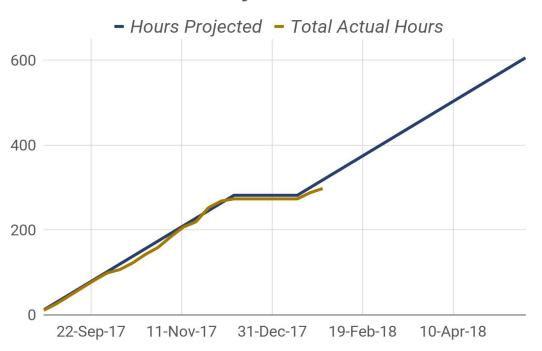
March 4th April 21st → March 18th - May 5th

- Test system against our quantitative specifications
- Test system in different environments and scenarios
 - Areas with low Wi-Fi connectivity, high levels of noise, different human operators, etc.
- Debugging
- Fine-tune components to create the most comfortable and intuitive experience

Task 16: Documentation

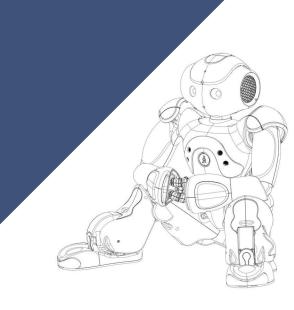
Ongoing throughout whole project

Budget


Total Budget: \$300

Item	Quantity	Cost per Quantity (\$)	Total Cost (\$)
Gaming Headset	1	\$ 128.46	\$ 128.46
Google Cardboard	2	\$ 19.99	\$ 39.98
NAO Robot	1	\$9,500.00	N/A
Miscellaneous (extra parts)	N/A	N/A	N/A
Total Cost			\$185.70

Project Hours



Action Item	Assigned To	Due Date
Speak with Joe Zanetti about VR Headset Assembly	Chelsea, Theresa, Daniel	TBD
Update Website With Current Progress	Theresa	February 13th
Summarize Work Plan to Advisor	Chelsea, Theresa, Daniel	February 8th

Questions?

