
Visual and Aural Telepresence via NAO Robot

Chelsea Cantone (CoE), Theresa Pham (CoE), Daniel Ponsini (EE)

Advisor: Dr. Seung-yun Kim

May 2nd, 2018

Overview

Introduction

- Problem Definition & Need Identification
- Humanoid Robot Background
- Project Goals
- Team Breakdown

Specifications

- High-Level Look at System
- System Block Diagram
- Quantitative Specifications

Subsystem Overview

- Web Application Interface
- User and Robot Systems

Project Management

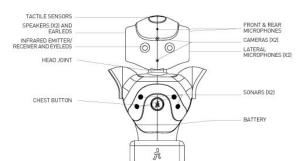
- Budget
- Hours

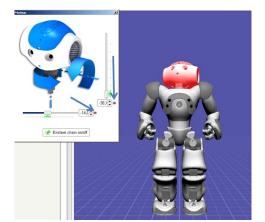
Conclusion

Questions

Problem Definition & Need Identification

- Applications for telepresence/teleoperation devices
 - Remote in to lectures, classes, conferences
 - Navigate dangerous terrain
 - ▶ Work remotely as tour guides, security, consultants, etc.
- Will allow people in far away places or people with disabilities to immerse themselves and physically interact in a remote environment

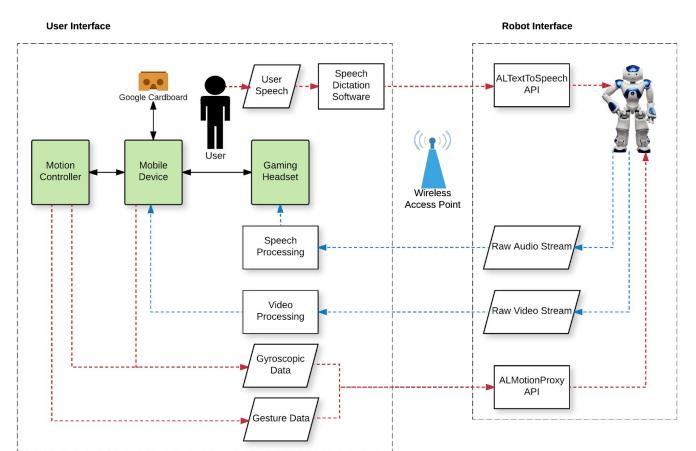


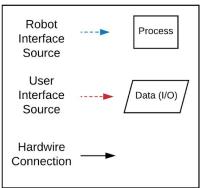

Humanoid Teleoperated Robot

- SoftBank Robotics NAO Robot
- Ideal for HRI (human robot interaction)
 - 23 inches (58 centimeters)
 - 25 Degrees of freedom to mimic human motion
 - Microphones (x 4) and speakers (x 2)
 - Cameras (x 2)

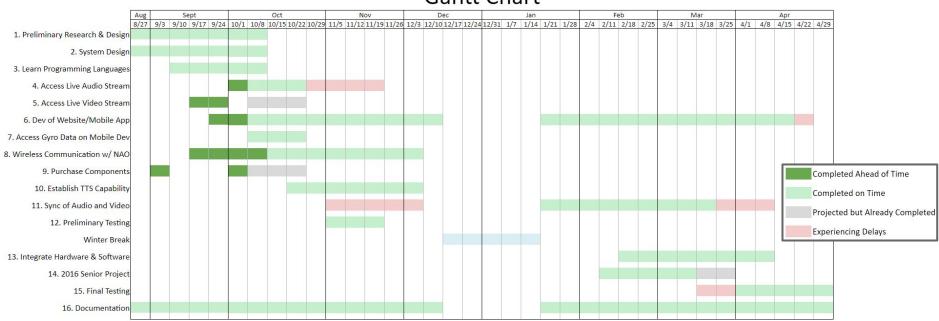
Project Goals

- To aurally and visually engage the user and audience using the NAO robot
- To develop wireless communication between the NAO and a user wearable headset
 - connecting movement using gyroscope data
- To develop a web/mobile application which receives a live video and audio stream from NAO
- To incorporate Motion-Based Humanoid Robot Controller project


Team Member	Work	
Chelsea Cantone	To implement audio streaming and speech processing between the NAO and its operator	
Theresa Pham	To work on video processing and develop the web/ mobile application for video streaming to the operator To work on controlling NAO movement based on sensor information and establish wireless communication between the NAO and headset	
Daniel Ponsini		



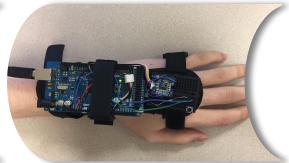
Legend



Specification	Quantitative Value	
Horizontal Field of View:	60 degrees	
Vertical Field of View:	50 degrees	
Headset Weight:	< 2.5 lbs	
Arm Controller Weight:	< 1 lb	
Battery Life:	1 - 2 hrs	
Video Resolution:	320×240 pixels	
Tolerated Latency:	< 1 second	
Framerate:	2 fps	
Movement sensitivity:	+/- 10 degrees	
Degrees of Freedom in Teleoperated Robot:	6	
Wireless Range:	32 meters	
Wireless Transmission Reliability:	< 3% frame loss rate	

Gantt Chart

System Components

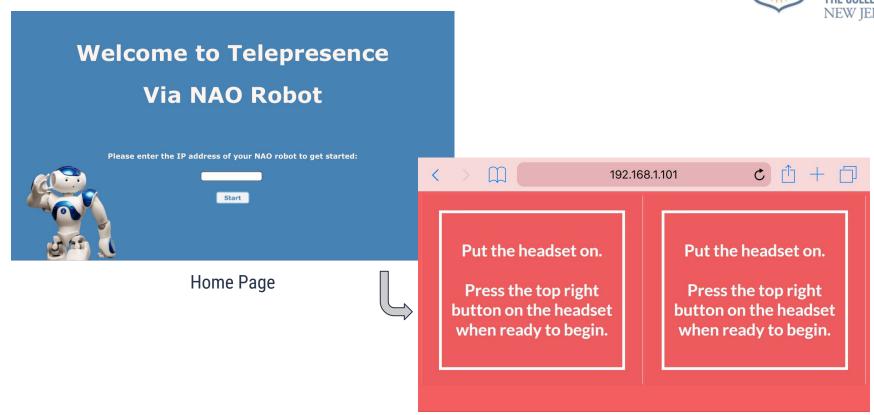


Welcome to Telepresence Via NAO Robot

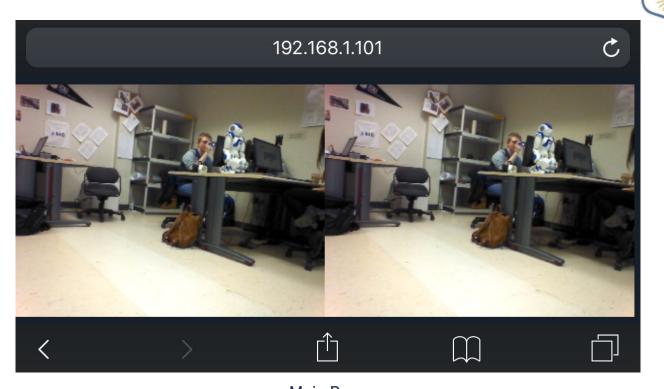
Please enter the IP address of your NAO robot to get started:

Web Application	Headset	Arm Controller	
 Where the user interacts with the system Accessible from any smart device 	 Live video stream Phone gyroscope data Live audio stream User speech input 	 Leg motion control using gesture sensor Speech control using button 	

Pages:


- Home Page
- Start Page
- Main Page
- End Screen/Redirection Page

Utilized:


- Python: Flask (web framework)
- Front-End Languages: HTML, JavaScript

Start Page

THE COLLEGE OF NEW JERSEY

Main Page Resolution: 320x240 Latency: ~0.6 seconds

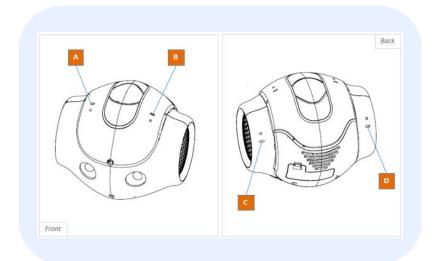
The system has been deactivated.

Remove the headset and tap the screen if you wish to restart.

The system has been deactivated.

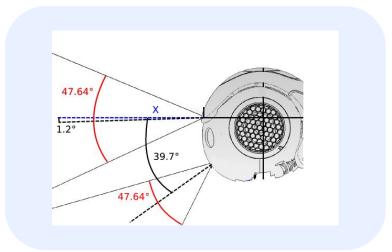
Remove the headset and tap the screen if you wish to restart.

Headset Controller

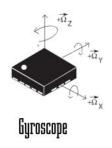

- Google Cardboard holds phone for video streaming and head motion control
- Headphones project audio stream and allow for speech from user through robot
- Headset is hands-free by adding velcro strap that connects over the head as well as on the sides

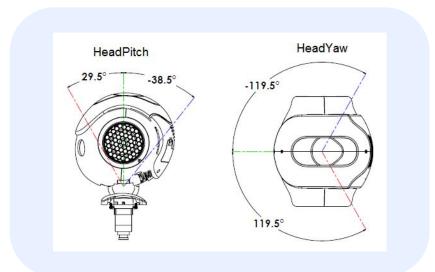
Live Audio Streaming

- Subscribe to NAO microphones using NAOqi SDK
- Filter and reshape received data to reduce noise
- Play sound in chunks using a deque
- Used a bandpass filter

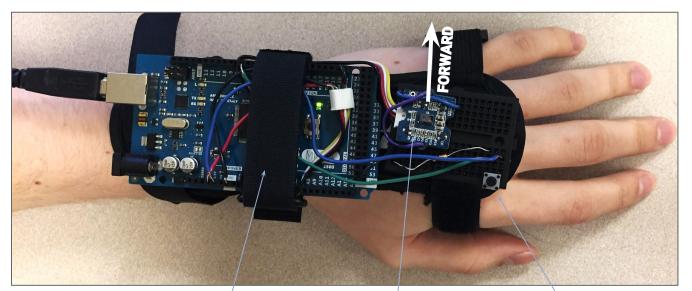


- Capture NAO camera frames and project stereoscopic image to headset with JavaScript
- Resolution 320 x 240
- Framerate 2 fps





Gyroscope Data on Mobile Device


- Receive and process data from phone's internal gyroscope using JavaScript
- Initializes an origin at startup
- Constrain gyroscopic data to NAO's allowable range of movement

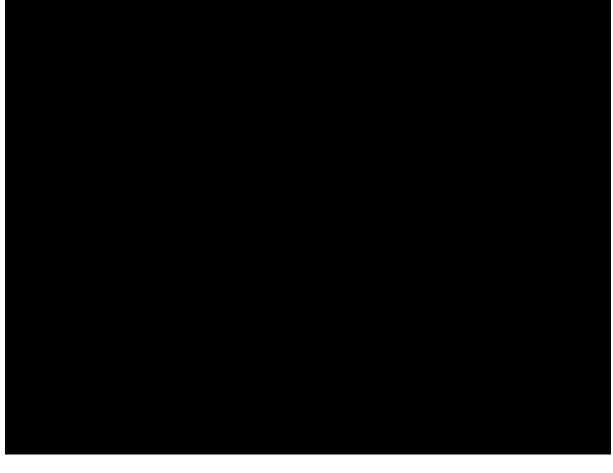
Arm Controller

Arduino Mega 2560

Gesture Sensor

Press to speak

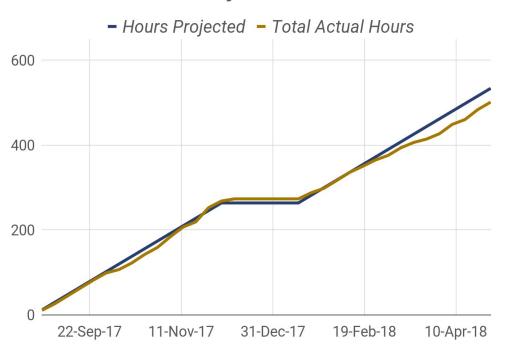
- Serial communication between Arm Controller and Web Application
- Gesture sensor provides commands for walking forward, backwards, left, right, turning, and stopping
- Press for robot text-to-speech
 - Command for "System Deactivate"



- Text-to-Speech prompted by button press
- Python script converts speech-to-text utilizing Google Speech Recognition API
- Processing speed varies depending on length of speech
- Error message notifies robot's audience if Google Speech Recognition cannot accurately distinguish human speech
 - "I am trying to say something, let me try again"
- Command for "Deactivate System"

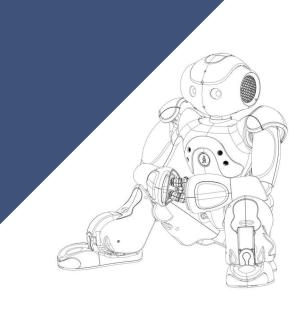
Demonstration

Total Budget: \$300


Total Spent: \$280.92

Item	Quantity	Cost per Quantity (\$)	Total Cost (\$)
Gaming Headset	1	\$ 128.46	\$ 128.46
Google Cardboard	2	\$ 19.99	\$ 39.98
Mic #1 (USB)	1	\$ 21.99	\$ 21.99
Mic # 2 (KIMAFUN)	1	\$ 49.99	\$ 49.99
Headstraps (2 pack)	1	\$ 5.99	\$ 5.99
Headstrap w/ Overhead Piece	1	\$ 5.99	\$ 5.99
Female to Female Connectors (6 pack)	1	\$ 6.99	\$ 6.99
NAO Robot	1	\$9,500.00	N/A
Miscellaneous (extra parts, shipping, etc.)	N/A	\$8.63	\$8.63

Project Hours


Conclusion

- The team successfully developed a telepresence system
 - Incorporated and optimized arm controller project to include in system
- Specifications were met overall
- Tested with several users
- Operator is able to project their voice and physical presence to a remote location, and receive sensory feedback on their environment to capture an **immersive** experience
- Audience can be more receptive to a speaker with a physical presence

Questions?

