

2026 AISC/ASCE Steel Bridge Fall Presentation

Team Members: Max Dawson, Steven Ioannidis (Team Leader), Joseph Ricciani, Phil Sambucci, Hannah Shepkosky

Faculty Advisor: Dr. Al-Omaishi PEng, PE Fabrication Specialist: Joe Zanetti

Overview

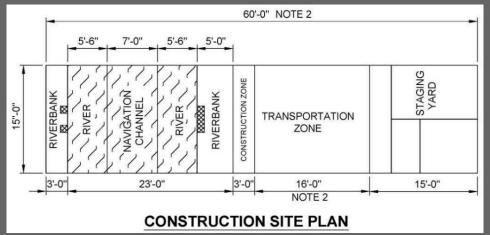
- ASCE AMERICA SOCIAL POPULAR DEL POPULAR DEL POPULAR DEL POPULA DEL

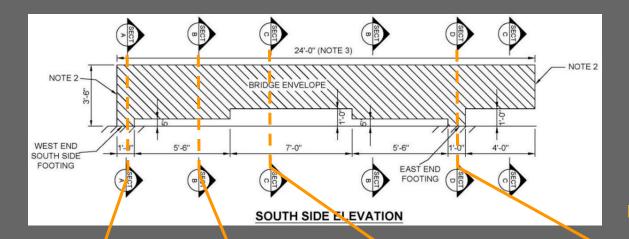
- 1. Problem Statement
- 2. Realistic Constraints
- 3. Design Constraints
- 4. Shear and Moment Envelopes
- 5. Alternate Designs
- 6. Decision Matrix
- 7. Final Design Selection
- 8. Materials
- 9. Connections
- 10. Method of Construction
- 11.Engineering Service Hours
- 12. Engineering Service Costs
- 13. Estimated Schedule
- 14.Regional Competition

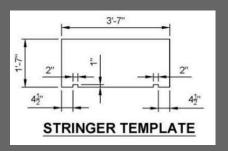
Problem Statement

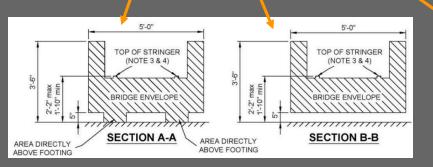
Location: Rio Grande River Park Trail, El Paso, Texas

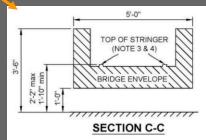
Objective: Pedestrian bridge that connects two communities

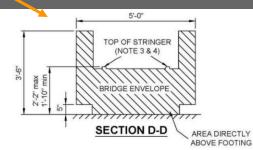



Realistic Constraints

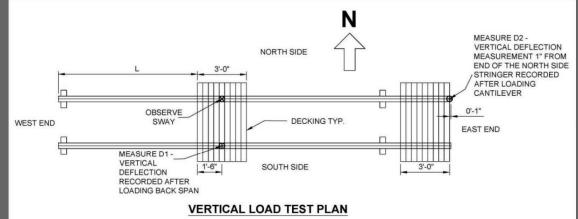

- Navigation Channel and two Rivers
- Riverbanks
- One Construction Zone
- Large Transportation distance

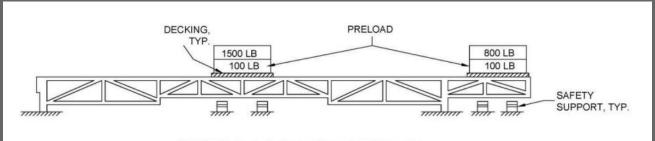

Design Constraints





Maximum Member Size = 3.5'x6"x4"


Loading


ASCE MENUAL SOCIETY OF CIVIL ENGINEERS NEW JERSEY

L is determined by the rolling of the dice.

TABLE 7.1 Determination of *L*

17 (DEE 711			acion or E		
N	L	Lateral	Vertical		
		Loading	Loading		
		(DWG #)	(DWG #)		
2	3'-0"	3	5		
3	4'-6"	4	6		
4	5'-6"	3	5		
5	6'-6"	4	6		
6	7'-6"	3	5		
7	8'-6"	4	6		
8	9'-0"	3	5		
9	9'-6"	4	6		
10	10'-0"	3	5		
11	11'-0"	4	6		
12	12'-0"	3	5		



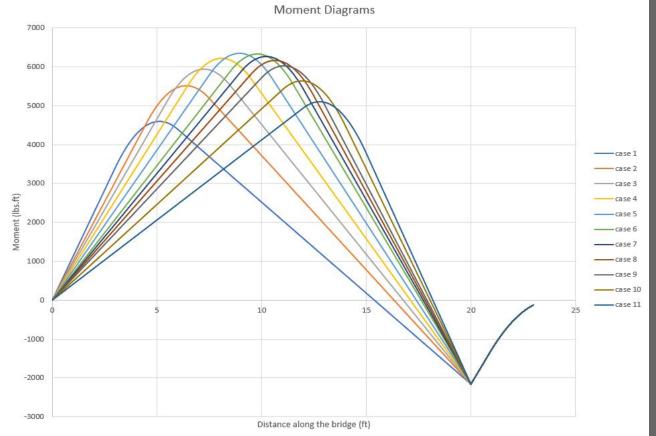
VERTICAL LOAD TEST ELEVATION

Shear Diagrams

-1000

-1500

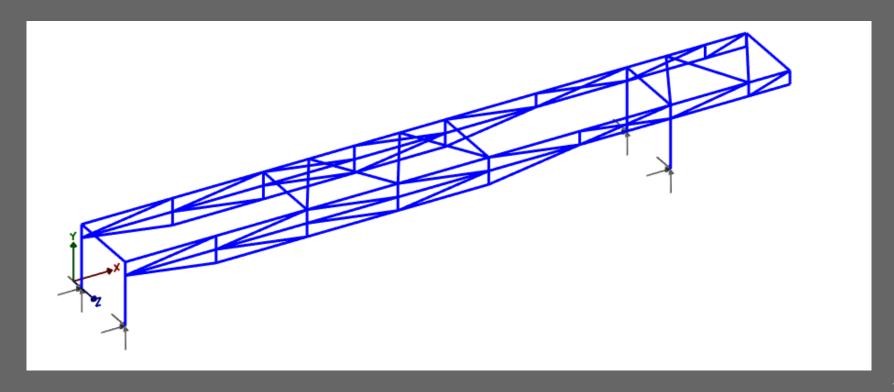
Distance Along the bridge (ft)


----- case 11

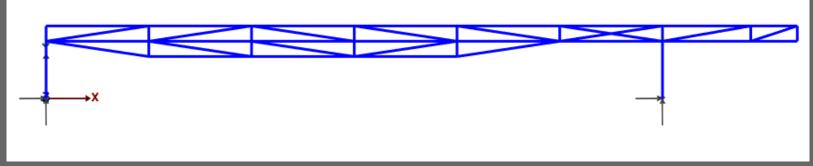
Moment Diagrams

Engineering Tools

- AutoCAD Civil 3D
- Visual Analysis



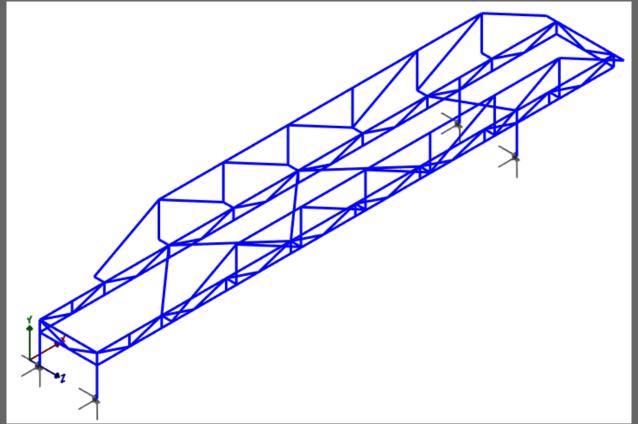
Design 1 - Beam with Howe Under Truss



Design 1 - Beam with Howe Under Truss

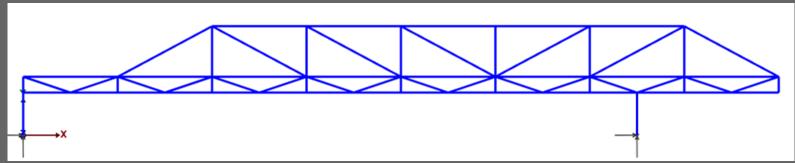
Pros

- Members
- Constructability
- Weight


Cons

Deflection

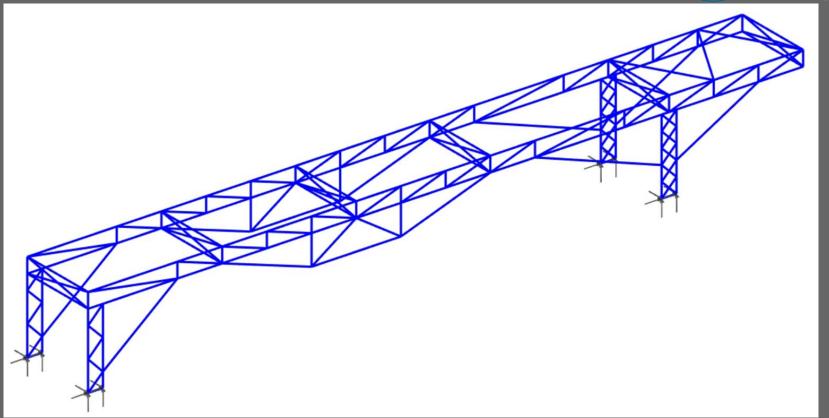
Design 2 - Beam With Over Truss



Design 2 - Beam With Over Truss

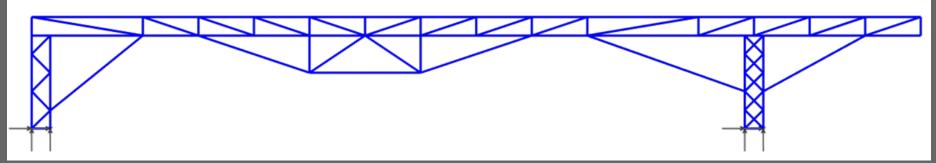
Pros

Lightweight


Cons

- Deflection
- Constructability

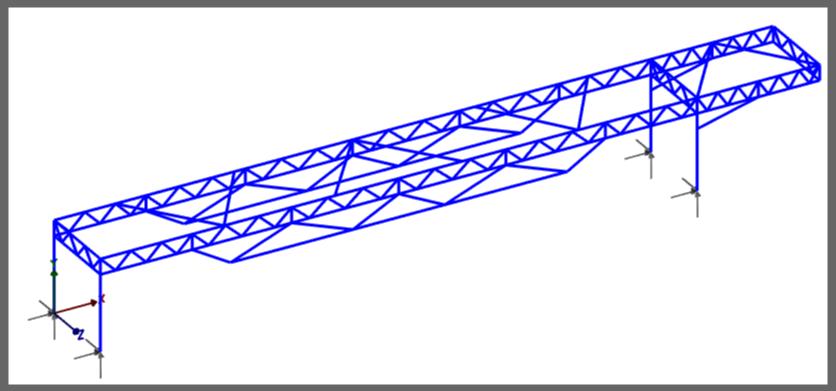
Design 3 - Pratt Truss Beam Bridge



Design 3 - Pratt Truss Beam Bridge

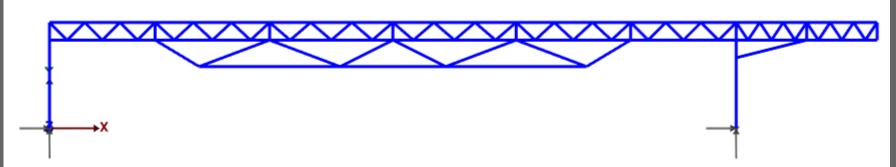
Pros

- Deflection
- Fabrication


Cons

- Self Weight
- Constructability

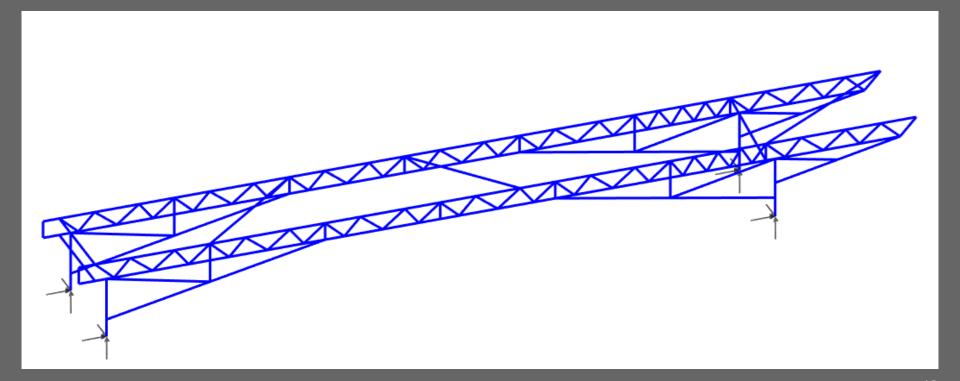
Design 4 - Beam with Under Truss



Design 4 - Beam with Under Truss

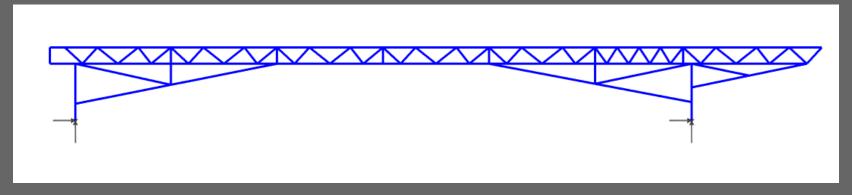
Pros

- Fabrication
- Deflection


Cons

- Construction Time
- Self Weight

Design 5 - Beam Bridge With Truss Arch



Design 5 - Beam Bridge With Truss Arch

Pros

- Deflection
- Constructability

Cons

Self Weight

Design Analysis Summary

Bridge Type	Max Deflection (in)	Weight (lbs)	Number of Connections	Number of Members
1: Beam with Howe Under Truss	1.40	262	57	42
2: Beam With Over Truss	1.68	283	88	54
3: Pratt Truss Beam Bridge	0.56	357	63	49
4: Beam with Under Truss	0.30	388	100	55
5: Truss Arch	0.07	415	60	45

Preliminary Decision Matrix

Criteria	Value	Design 1: Beam with Howe Under Truss	Design 2: Beam with Over Truss	Design 3: Pratt Truss Beam Bridge	Design 4: Beam with Under Truss	Design 5: Truss Arch
Constructability	5	5	2	4	1	4
Deflection	3	2	1	3	4	5
Weight	1	5	4	3	2	1
Total Score:		36	17	32	19	36

- The Alternative with the Highest Score is Optimal
- Tie Between Design 1 and Design 5
- Best Alternative Decided through Cost Equation

Construction Economy Equation:

 C_c = (Construction Time x Number of Builders x 160,000 x γ_{build}) + [(Total Time - Construction Time) x 350,000]

Structural Efficiency Equation:

 $C_s = [Measured Weight]^{1.8} \times 75 + (Total Weight - Measured Weight) \times 4,375 + <math>\gamma_{Lat} \times Aggregate Deflection \times 4,000,000 + Load Test Penalties$

Total

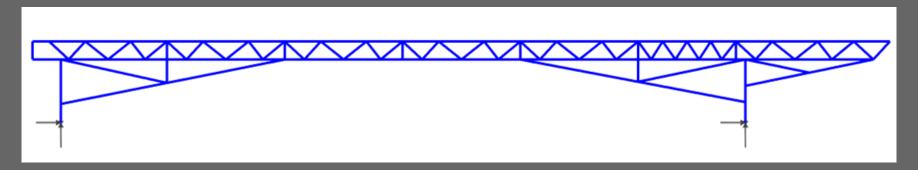
Deflection >3" penalty	Total Cost
\$0.00	\$14,052,100.00
\$0.00	\$17,412,100.00
\$0.00	\$12,596,200.00
\$0.00	\$13,944,800.00
\$0.00	\$11,204,600.00

Best Alternative

• Design 5

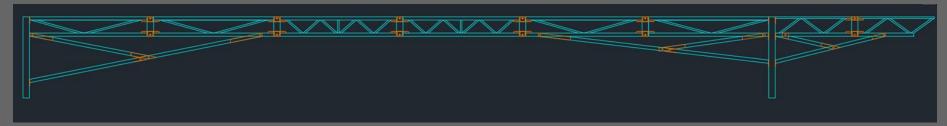
Construction

Design	Members	Connections	Construction Time (min)	Builders	Barges	Y build	Construction Economy Cost
1	42	57	9.300	1	3	0.8	\$4,761,600.00
2	54	88	13.183	1	3	0.8	\$6,749,900.00
3	49	63	10.558	1	3	0.8	\$5,405,900.00
4	55	100	14.292	1	3	0.8	\$7,317,400.00
5	45	60	9.875	1	3	0.8	\$5,056,000.00


Structural

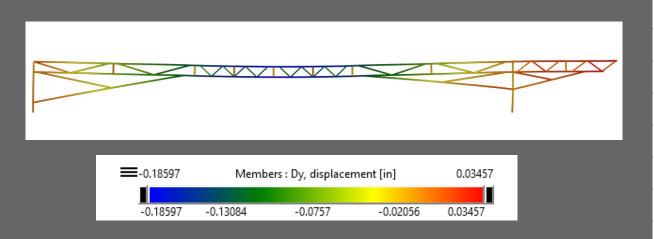
Design	Bridge Weight (lbs)	Lateral Sway (in)	Y lateral	Vertical Deflection (in)	Structural Efficiency Cost
1	262	0.5	1	1.4	\$9,290,500.00
2	283	0.5	1	1.68	\$10,662,200.00
3	357	0.5	1	0.56	\$7,190,300.00
4	388	0.5	1	0.3	\$6,627,400.00
5	415	0.5	1	0.07	\$6,148,600.00

Final Design Selection



- Optimize Members
- Construction Method
- Consolidate Connections
- Lateral Bracing

Optimized Final Design



Design	Members	Connections	Construction Time (min)	Builders	Barges	Y build	Construction Economy Cost
Optimal	44	52	9.100	1	3	0.8	\$4,659,200.00

Design	Bridge Weight	Lateral Sway	ateral Sway Y lateral		Structural	
Design	(lbs)	(in)	Tiaterai	Deflection (in)	Efficiency Cost	
Optimal	294	0.5	1	0.56	\$6,312,200.00	

Deflection >3"	Total Cost		
\$0.00	\$10,971,400.00		

Deflections Cases

Case 6 is controlling

Case	Deflection
Case 1	0.30"
Case 2	0.39"
Case 3	0.46"
Case 4	0.54"
Case 5	0.54"
Case 6	0.56"
Case 7	0.54"
Case 8	0.54"
Case 9	0.52"
Case 10	0.45"
Case 11	0.38"

Materials

<u>Members</u>

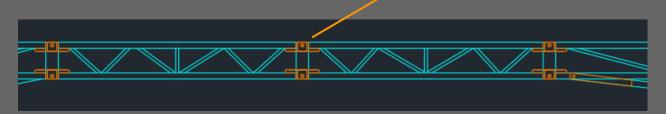
- 2" x 2" x 1/8"
- 1" x 1" x 1/8"
- ½" x ½" x 1/16"

Plates

• 1/8" & 1/4" Thick

Bolts

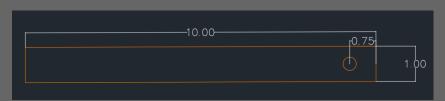
- 3/8" Diameter Grade 8
 - 3" Length
 - 1½" Length

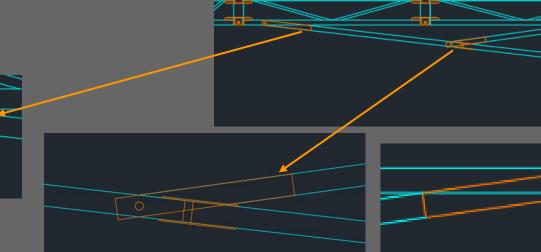


Connections

Beam Member Connection

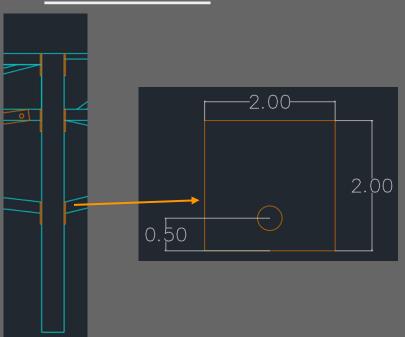
- Male/Female Connections
- Double shear
- Welded

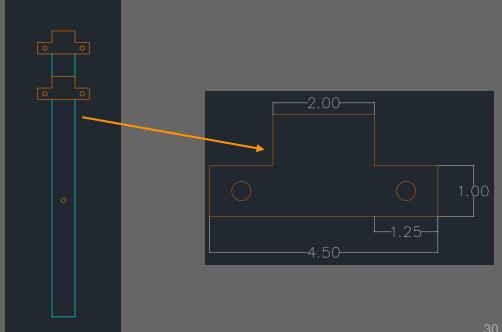

Connections



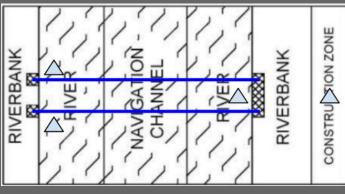
Under Truss Connection

- Single Shear
- 1/8" Plate

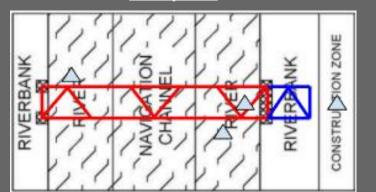



Connections

Pedestal Connection Side View



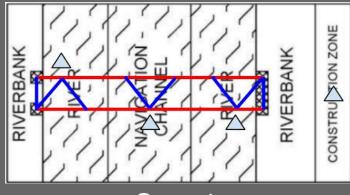
Cross Section View



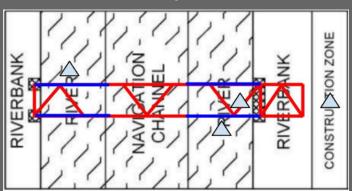
Method of Construction

<u>Step 1:</u>

Step 3:



Legend:


Blue = Under Construction Red = Complete

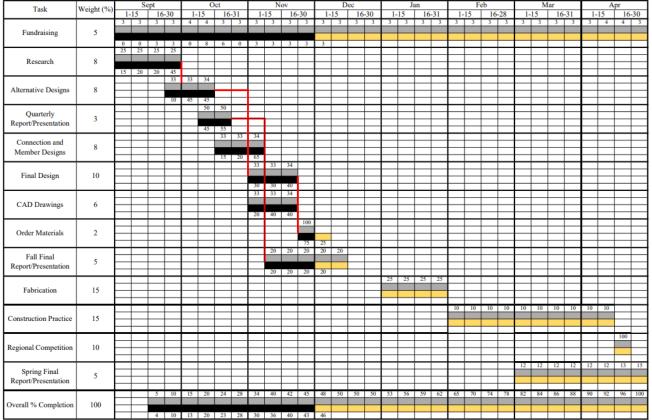
Step 2:

<u>Step 4:</u>

Engineer Services Hours

	Dr. Nabil Al-Omaishi	Joseph Zanetti	Steven loannidis	Joseph Ricciani	Hannah Shepkosky	Max Dawson	Phillip Sambucci
Task	Faculty Advisor	Lead Machinist	Team Leader	Members Lead	Connections Lead	CAD Lead	Material Analysis/ Fabrication Lead
	Engineer V	Machinist	Engineer II	Engineer I	Engineer I	Engineer I	Engineer I
Research	2		8	8	8	8	8
Fundraising			5	3	3	3	3
Proposal Presentation	1		10	8	8	8	8
Alternative Designs	8	2	25	25	25	25	25
Quarterly Report	1		10	10	10	10	10
Final Design Improvements	5	2	18	18	18	18	18
Member Designs	1	1	5	5	5	7	6
Connection Designs	5	1	12	12	16	12	15
CAD Drawings		1	6	6	6	8	6
Material Ordering			4	6	2	2	2
Competition Preperation			8	4	4	4	4
Welding Clinic		2	2	2	2	2	2
Fabrication		10	25	25	25	25	25
Total Fall Semester Hours	23	19	138	132	132	132	132
		V	Vinter Semester				
Fabrication		30	50	50	50	50	50
			Spring Semester				
Fabrication		10	15	15	15	15	15
Construction Practice	1	5	45	45	45	45	45
Student Symposium	8		12	12	12	12	12
Final Report	1		10	10	10	10	10
Final Presentation	1		10	10	10	10	10
Total Spring Semester Hours	11	15	92	92	92	92	92
			Total Hours				
Total Hours	34	64	280	274	274	274	274

Team Member	Dr. Nabil Al-Omaishi	Joseph Zanetti	Steven loannidis	Joseph Ricciani	Hannah Shepkosky	Max Dawson	Phillip Sambucci
Position	Faculty Advisor	Lead Machinist	Team Leader	Connections Lead	Members Lead	CAD Lead	Material Analysis/ Fabrication Lead
Payroll Title	Engineer V	Machinist	Engineer II	Engineer I	Engineer I	Engineer I	Engineer I
Hourly Rate	\$110.00	\$70.00	\$40.00	\$38.00	\$38.00	\$38.00	\$38.00
Fall Total Hours Salaries	23 \$2,600.00	19 \$1,400.00	138 \$5,600.00	132 \$5,100.00	132 \$5,100.00	132 \$5,100.00	132 \$5,100.00
Winter Total Hours Salaries	\$0.00	30 \$2,100.00	50 \$2,000.00	50 \$1,900.00	50 \$1,900.00	50 \$1,900.00	50 \$1,900.00
Spring Total Hours Salaries	11 \$1,300.00	15 \$1,100.00	92 \$3,700.00	92 \$3,500.00	92 \$3,500.00	92 \$3,500.00	92 \$3,500.00
Total Salaries	\$3,900.00	\$4,600.00	\$11,300.00	\$10,500.00	\$10,500.00	\$10,500.00	\$10,500.00



Engineering Cost		
Fall Total		\$30,000.00
Overhead Fee	150%	\$45,000.00
Fixed Fee	10%	\$7,500.00
Fall Total Engineering Cost		\$82,500.00
Winter Total		\$11,700.00
Overhead Fee	150%	\$17,600.00
Fixed Fee	10%	\$3,000.00
Winter Total Engineering Cost		\$32,300.00
Spring Total		\$20,100.00
Overhead Fee	150%	\$30,200.00
Fixed Fee	10%	\$5,100.00
Spring Total Engineering Cost		\$55,400.00
Year Total Engineering Cost		\$170,200.00

Estimated Schedule

Regional Competition

 Hosted by TCNJ on the 18th of April

Acknowledgements

- Dr. Nabil Al-Omaishi PEng, PE
- Joe Zanetti
- Dr. Krstic PE
- Dr. Bechtel
- McKnight Steel & Tube Co.

Questions?